

Update No.5 - 2017Dr Christophe RostyAdenomatous polyposis syndromes

- 5% of all colorectal carcinomas are caused by a known genetic syndrome
- Lynch syndrome is the most common inherited condition predisposing to CRC but is usually not associated with colonic polyposis
- Polyposis syndromes include <u>adenomatous polyposis</u>, <u>serrated polyposis and</u> <u>hamartomatous polyposis</u>
- Familial adenomatous polyposis (FAP) was the first described adenomatous polyposis syndrome associated with inevitable development of CRC. Other adenomatous polyposis syndromes have been identified more recently: *MUTYH*-associated polyposis, polymerase proofreading-associated polyposis and *NTHL1*-associated tumour syndrome (Table 1). Adenomas in this context include conventional tubular, tubulovillous and villous adenomas but not sessile serrated adenomas.

Syndrome	Gene	Inheritance	Gastrointestinal polyposis	Other tumour risk
FAP, classic form	APC	Autosomal dominant	Multiple (≥100) colonic adenomas; gastric fundic gland polyps and pyloric gland adenomas; small intestinal adenomas	Cancer of small intestine, stomach; desmoid tumours; hepatoblastoma; some brain and thyroid tumours; osteoma
FAP, attenuated form	APC	Autosomal dominant	10-99 adenomas predominant in proximal colon; gastric fundic gland polyps and pyloric gland adenomas; small intestinal adenomas	Rare
MUTYH- associated polyposis	MUTYH	Autosomal recessive	Multiple colonic adenomas (some >100) with serrated polyps; gastric fundic gland polyps; duodenal adenomas	Cancer of bladder, ovary, duodenum
Polymerase proofreading- associated polyposis	POLE, POLD1	Autosomal dominant	Multiple colonic adenomas, duodenal adenomas	Cancer of endometrium; brain tumours
NTHL1- associated tumour syndrome	NTHL1	Autosomal recessive	Multiple colonic adenomas (up to 200)	Cancer of breast, duodenum, bladder, brain, endometrium, head and neck, hematologic system

Table 1. Summary of the currently known inherited adenomatous polyposis syndromes predisposing to colorectal carcinoma

When to refer a patient with multiple colonic polyps for genetic counselling?

Patients with one of these findings may be tested for APC and MUTYH mutation:

- ≥ 20 colonic adenomas
- 10-20 adenomas with family history of multiple adenomas, early age of onset, or extra-colonic tumours associated with one of the polyposis syndromes

The prevalence of mutation identified varies by adenoma count:

Number of adenomas	Prevalence of mutation	
	APC	MUTYH
>1000	80%	2%
100-999	56%	7%
20-99	10%	7%
10-19	5%	4%

There is phenotypic overlap between serrated polyposis and *MUTYH*-associated polyposis, and between Lynch syndrome and *MUTYH*-associated polyposis.

Fig. 1. Multiple colonic polyps in FAP

References:

Galiatsatos P et al. Familial adenomatous polyposis. Am J Gastroenterol 2006; 101:385-398. Guarinos C et al. Prevalence and characteristics of MUTYH-associated polyposis in patients with multiple adenomatous and serrated polyps. Clin Cancer Res 2014; 20:1158-1168.

Palles C et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2012; 45:136-144.

Weren RD et al. A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet 2015; 47:668-671.

Grover S et al. Prevalence and phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. JAMA. 2012; 308(5):485-492.